Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 33(1): e4857, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38058248

RESUMEN

The 3C-like protease (3CLpro ) is crucial to the replication of SARS-CoV-2, the causative agent of COVID-19, and is the target of several successful drugs including Paxlovid and Xocova. Nevertheless, the emergence of viral resistance underlines the need for alternative drug strategies. 3CLpro only functions as a homodimer, making the protein-protein interface an attractive drug target. Dimerization is partly mediated by a conserved glycine at position 11. However, some naturally occurring SARS-CoV-2 sequences contain a serine at this position, potentially disrupting the dimer. We have used concentration-dependent activity assays and mass spectrometry to show that indeed the G11S mutation reduces the stability of the dimer by 600-fold. This helps to set a quantitative benchmark for the minimum potency required of any future protein-protein interaction inhibitors targeting 3CLpro and raises interesting questions regarding how coronaviruses bearing such weakly dimerizing 3CLpro enzymes are capable of replication.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Péptido Hidrolasas/genética , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Mutación , Antivirales/química
2.
Chem Commun (Camb) ; 59(73): 10866-10882, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37609777

RESUMEN

Drugs that act by covalently attaching to their targets have been used to treat human diseases for over a hundred years. However, the deliberate design of covalent drugs was discouraged due to concerns of toxicity and off-target effects. Recent successes in covalent drug discovery have sparked fresh interest in this field. New screening and testing methods aimed at covalent inhibitors can play pivotal roles in facilitating the discovery process. This feature article focuses on computational and biophysical advances originating from our labs over the past decade and how these approaches have contributed to the design of prolyl oligopeptidase (POP) and SARS-CoV-2 3CLpro covalent inhibitors.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Biofisica , Descubrimiento de Drogas
3.
Chemistry ; 29(33): e202300080, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-36997502

RESUMEN

Self-replication of nucleic acids in the absence of enzymes represents an important and poorly understood step in the origin of life as such reported systems are strongly hindered by product inhibition. Studying one of the few successful examples of enzymatic DNA self-replication based on a simple ligation chain reaction, lesion-induced DNA amplification (LIDA), can shed light on how this fundamental process may have originally evolved. To identify the unknown factors that lead LIDA to overcome product inhibition we have employed isothermal titration calorimetry and global fitting of time-dependent ligation data to characterize the individual steps of the amplification process. We find that incorporating the abasic lesion into one of the four primers substantially decreases the stability difference between the product and intermediate complexes compared with complexes without the abasic group. In the presence of T4 DNA ligase this stability gap is further reduced by two orders of magnitude revealing that the ligase also helps overcome product inhibition. Kinetic simulations reveal that the intermediate complex stability and the magnitude of the ligation rate constant significantly impact the rate of self-replication, suggesting that catalysts that both facilitate ligation and stabilize the intermediate complex might be a route to efficient nonenzymatic replication.


Asunto(s)
ADN Ligasas , Técnicas de Amplificación de Ácido Nucleico , ADN Ligasas/química , ADN Ligasas/genética , ADN Ligasas/metabolismo , Catálisis , ADN/química , Replicación del ADN
4.
Commun Chem ; 6(1): 31, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36797370

RESUMEN

G-quadruplex and i-motif nucleic acid structures are believed to fold through kinetic partitioning mechanisms. Such mechanisms explain the structural heterogeneity of G-quadruplex metastable intermediates which have been extensively reported. On the other hand, i-motif folding is regarded as predictable, and research on alternative i-motif folds is limited. While TC5 normally folds into a stable tetrameric i-motif in solution, we report that 2'-deoxy-2'-fluoroarabinocytidine (araF-C) substitutions can prompt TC5 to form an off-pathway and kinetically-trapped dimeric i-motif, thereby expanding the scope of i-motif folding landscapes. This i-motif is formed by two strands, associated head-to-head, and featuring zero-nucleotide loops which have not been previously observed. Through spectroscopic and computational analyses, we also establish that the dimeric i-motif is stabilized by fluorine and non-fluorine hydrogen bonds, thereby explaining the superlative stability of araF-C modified i-motifs. Comparative experimental findings suggest that the strength of these interactions depends on the flexible sugar pucker adopted by the araF-C residue. Overall, the findings reported here provide a new role for i-motifs in nanotechnology and also pose the question of whether unprecedented i-motif folds may exist in vivo.

5.
Eur J Med Chem ; 229: 114046, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34995923

RESUMEN

Severe diseases such as the ongoing COVID-19 pandemic, as well as the previous SARS and MERS outbreaks, are the result of coronavirus infections and have demonstrated the urgent need for antiviral drugs to combat these deadly viruses. Due to its essential role in viral replication and function, 3CLpro (main coronaviruses cysteine-protease) has been identified as a promising target for the development of antiviral drugs. Previously reported SARS-CoV 3CLpro non-covalent inhibitors were used as a starting point for the development of covalent inhibitors of SARS-CoV-2 3CLpro. We report herein our efforts in the design and synthesis of submicromolar covalent inhibitors when the enzymatic activity of the viral protease was used as a screening platform.


Asunto(s)
Antivirales/síntesis química , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/farmacología , Animales , Diseño de Fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Replicación Viral/efectos de los fármacos
6.
J Am Chem Soc ; 143(47): 19824-19833, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34783562

RESUMEN

Nucleobase mimicking small molecules able to reconfigure DNA are a recently discovered strategy that promises to extend the structural and functional diversity of nucleic acids. However, only simple, unfunctionalized molecules such as cyanuric acid and melamine have so far been used in this approach. In this work, we show that the addition of substituted cyanuric acid molecules can successfully program polyadenine strands to assemble into supramolecular fibers. Unlike conventional DNA nanostructure functionalization, which typically end-labels DNA strands, our approach incorporates functional groups into DNA with high density using small molecules and results in new DNA triple helices coated with alkylamine or alcohol units that grow into micrometer-long fibers. We find that small changes in the small molecule functional group can result in large structural and energetic variation in the overall assembly. A combination of circular dichroism, atomic force microscopy, molecular dynamics simulations, and a new thermodynamic method, transient equilibrium mapping, elucidated the molecular factors behind these large changes. In particular, we identify substantial DNA sugar and phosphate group deformations to accommodate a hydrogen bond between the phosphate and the small-molecule functional groups, as well as a critical chain length of the functional group which switches this interaction from intra- to interfiber. These parameters allow the controlled formation of hierarchical, hybrid DNA assemblies simply through the addition and variation of small, functionalized molecules.


Asunto(s)
ADN/química , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Polimerizacion , Electricidad Estática , Triazinas/química
7.
Anal Chem ; 93(37): 12723-12732, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34514786

RESUMEN

There is growing interest in using isothermal titration calorimetry (ITC) to characterize enzyme kinetics by measuring the heat produced or absorbed by catalysis in real time. Since virtually all chemical reactions are associated with changes in enthalpy, ITC represents a robust and nearly universal experimental approach. Nevertheless, there are technical challenges that limit ITC's applicability. For instance, the full kinetic characterization of enzymes with two substrates (bi-substrate enzymes), which comprise the majority of known examples, requires a series of experiments to be performed as the concentrations of both substrates are varied. This is a time-consuming and expensive process using current ITC methods since many (>5) individual experiments must be performed independently to obtain a sufficient quantity of data. We have developed a new ITC method, which we term 2D-ITC, which maps the reaction velocity as a function of two substrate concentrations in a single, roughly 2 h long experiment. This method provides a level of detail that rivals or exceeds any existing enzyme assay, as a single experiment generates on the order of 7000 catalytic rate measurements. In a proof-of-principle application to rabbit muscle pyruvate kinase (rMPK), the method correctly identified the enzyme's random sequential mechanism and allosteric catalytic suppression by the amino acid phenylalanine (Phe). Unexpectedly, we found that while Phe reduces affinity for the substrate phosphoenolpyruvate, a known phenomenon, it also alleviates inhibition by the reaction product ATP, which had not been reported previously. Given the relative abundance of ATP in the cell, this opposing effect is expected to have a substantial impact on rMPK activity.


Asunto(s)
Pruebas de Enzimas , Animales , Calorimetría , Catálisis , Cinética , Conejos , Termodinámica
8.
Langmuir ; 37(38): 11222-11232, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34524822

RESUMEN

Efficient delivery of therapeutic compounds to their sites of action has been a ubiquitous concern throughout the history of human medicine. The tumor microenvironment offers a variety of endogenous stimuli that may be exploited by a responsive nanocarrier, including heterogeneities in redox potential. In the early stages of the design of such responsive delivery systems, it is necessary to develop a comprehensive understanding of the biophysical mechanism by which the stimulus response occurs, as well as how the response may change from the inclusion of cargo compounds. We describe the optimization of lipid compositions for liposomes containing synthetic ferrocene-appended lipids to achieve highly efficient loading of doxorubicin via an ethylenediaminetetraacetic acid (EDTA) gradient. Liposomes containing ferrocenylated phospholipid are shown to be unstable to the loading conditions, while those including a ferrocenylated alkylammonium amphiphile obtain a near-quantitative loading efficiency. Calorimetric studies demonstrate that this instability is the consequence of the relative degree of lipid hydrolysis that occurs under the acidic loading conditions. Drug-loaded liposomes of the optimized composition are studied by cryo-TEM; the presence of doxorubicin aggregates is observed inside vesicles, and doxorubicin release, as well as the changes in membrane structure resulting from oxidant treatment, is also observed by cryogenic transmission electron microscopy (cryo-TEM). These results further demonstrate the potential of ferrocene lipids in the design of redox-responsive nanocarriers and begin to explore their possible role as probes of membrane dynamics.


Asunto(s)
Doxorrubicina , Liposomas , Sistemas de Liberación de Medicamentos , Ácido Edético , Humanos , Lípidos , Metalocenos
9.
J Mol Recognit ; 34(10): e2901, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33975380

RESUMEN

The last 5 years have seen a series of advances in the application of isothermal titration microcalorimetry (ITC) and interpretation of ITC data. ITC has played an invaluable role in understanding multiprotein complex formation including proteolysis-targeting chimeras (PROTACS), and mitochondrial autophagy receptor Nix interaction with LC3 and GABARAP. It has also helped elucidate complex allosteric communication in protein complexes like trp RNA-binding attenuation protein (TRAP) complex. Advances in kinetics analysis have enabled the calculation of kinetic rate constants from pre-existing ITC data sets. Diverse strategies have also been developed to study enzyme kinetics and enzyme-inhibitor interactions. ITC has also been applied to study small molecule solvent and solute interactions involved in extraction, separation, and purification applications including liquid-liquid separation and extractive distillation. Diverse applications of ITC have been developed from the analysis of protein instability at different temperatures, determination of enzyme kinetics in suspensions of living cells to the adsorption of uremic toxins from aqueous streams.


Asunto(s)
Calorimetría/métodos , Descubrimiento de Drogas/métodos , Enzimas/química , Proteínas/química , Animales , Investigación Biomédica/métodos , Calorimetría/instrumentación , Catálisis , Entropía , Enzimas/metabolismo , Humanos , Extracción Líquido-Líquido/métodos , Minerales/química , Minerales/aislamiento & purificación , Tóxinas Urémicas/química , Tóxinas Urémicas/aislamiento & purificación
10.
Nucleic Acids Res ; 49(3): 1247-1262, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33469659

RESUMEN

G-quadruplexes (G4s) are four-stranded, guanine-rich nucleic acid structures that can influence a variety of biological processes such as the transcription and translation of genes and DNA replication. In many cases, a single G4-forming nucleic acid sequence can adopt multiple different folded conformations that interconvert on biologically relevant timescales, entropically stabilizing the folded state. The coexistence of different folded conformations also suggests that there are multiple pathways leading from the unfolded to the folded state ensembles, potentially modulating the folding rate and biological activity. We have developed an experimental method for quantifying the contributions of individual pathways to the folding of conformationally heterogeneous G4s that is based on mutagenesis, thermal hysteresis kinetic experiments and global analysis, and validated our results using photocaged kinetic NMR experiments. We studied the regulatory Pu22 G4 from the c-myc oncogene promoter, which adopts at least four distinct folded isomers. We found that the presence of four parallel pathways leads to a 2.5-fold acceleration in folding; that is, the effective folding rate from the unfolded to folded ensembles is 2.5 times as large as the rate constant for the fastest individual pathway. Since many G4 sequences can adopt many more than four isomers, folding accelerations of more than an order of magnitude are possible via this mechanism.


Asunto(s)
G-Cuádruplex , Humanos , Isomerismo , Cinética , Mutación , Resonancia Magnética Nuclear Biomolecular , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/genética , Termodinámica
11.
Front Mol Biosci ; 7: 583826, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195429

RESUMEN

Isothermal titration calorimetry (ITC) involves accurately measuring the heat that is released or absorbed in real time when one solution is titrated into another. This technique is usually used to measure the thermodynamics of binding reactions. However, there is mounting interest in using it to measure reaction kinetics, particularly enzymatic catalysis. This application of ITC has been steadily growing for the past two decades, and the method is proving to be sensitive, generally applicable, and capable of providing information on enzyme activity that is difficult to obtain using traditional biochemical assays. This review aims to give a broad overview of the use of ITC to measure enzyme kinetics. It describes several different classes of ITC experiment, their strengths and weaknesses, and recent methodological advancements. A summary of applications in the literature is given and several examples where ITC has been used to investigate challenging aspects of enzyme behavior are presented in more detail. These include examples of allostery, where small-molecule binding outside the active site modulates activity. We describe the use of ITC to measure the strength, mode (i.e., competitive, uncompetitive, or mixed), and association and dissociation kinetics of enzyme inhibitors. Further, we provide examples of ITC applied to complex, heterogeneous mixtures, such as insoluble substrates and live cells. These studies exemplify the wide range of problems where ITC can provide answers, and illustrate the versatility of the technique and potential for future development and applications.

12.
Proc Natl Acad Sci U S A ; 117(11): 5895-5906, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32123115

RESUMEN

The 300-kDa ClpP1P2 protease from Mycobacterium tuberculosis collaborates with the AAA+ (ATPases associated with a variety of cellular activities) unfoldases, ClpC1 and ClpX, to degrade substrate proteins. Unlike in other bacteria, all of the components of the Clp system are essential for growth and virulence of mycobacteria, and their inhibitors show promise as antibiotics. MtClpP1P2 is unique in that it contains a pair of distinct ClpP1 and ClpP2 rings and also requires the presence of activator peptides, such as benzoyl-leucyl-leucine (Bz-LL), for function. Understanding the structural basis for this requirement has been elusive but is critical for the rational design and improvement of antituberculosis (anti-TB) therapeutics that target the Clp system. Here, we present a combined biophysical and biochemical study to explore the structure-dynamics-function relationship in MtClpP1P2. Electron cryomicroscopy (cryo-EM) structures of apo and acyldepsipeptide-bound MtClpP1P2 explain their lack of activity by showing loss of a key ß-sheet in a sequence known as the handle region that is critical for the proper formation of the catalytic triad. Methyl transverse relaxation-optimized spectroscopy (TROSY)-based NMR, cryo-EM, and biochemical assays show that, on binding Bz-LL or covalent inhibitors, MtClpP1P2 undergoes a conformational change from an inactive compact state to an active extended structure that can be explained by a modified Monod-Wyman-Changeux model. Our study establishes a critical role for the handle region as an on/off switch for function and shows extensive allosteric interactions involving both intra- and interring communication that regulate MtClpP1P2 activity and that can potentially be exploited by small molecules to target M. tuberculosis.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón/métodos , Mycobacterium tuberculosis/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Cristalografía por Rayos X , Endopeptidasa Clp/química , Endopeptidasa Clp/metabolismo , Escherichia coli , Homeostasis , Modelos Moleculares , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis
13.
J Am Chem Soc ; 142(1): 264-273, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31815451

RESUMEN

The complex folding energy landscape of DNA G-quadruplexes leads to numerous conformations for this functionally important class of noncanonical DNA structures. A new layer of conformational heterogeneity comes from sequences with different numbers of G-nucleotides in each of the DNA G-strands that form the four-stranded G-quartet core. The mechanisms by which G-quadruplexes transition from one folded conformation to another are currently unknown. To address this question, we studied two different G-quadruplexes, selecting a single conformation by blocking hydrogen bonding with photolabile protection groups. Upon irradiation, the block can be released and the kinetics of re-equilibration to the native conformational equilibrium can be determined by time-resolved NMR. We compared the NMR-derived refolding kinetics with data derived from thermal hysteresis folding kinetic experiments and found excellent agreement. The outlined methodological approach allows separation of K+-induced G-quadruplex formation and subsequent refolding and provides key insight into rate-limiting steps of G-quadruplex conformational dynamics.


Asunto(s)
ADN/química , G-Cuádruplex , Conformación de Ácido Nucleico , Cinética , Resonancia Magnética Nuclear Biomolecular
14.
Eur J Med Chem ; 185: 111783, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31732257

RESUMEN

Over the past decade, many drug discovery endeavors have been invested in targeting the serine proteases prolyl oligopeptidase (POP) for the treatment of Alzheimer's and Parkinson's disease and, more recently, epithelial cancers. Our research group has focused on the discovery of reversible covalent inhibitors, namely nitriles, to target the catalytic serine residue in this enzyme. While there have been many inhibitors discovered containing a nitrile to covalently bind to the catalytic serine, we have been investigating others, particularly boronic acids and boronic esters, the latter of which have been largely unexplored as covalent warheads. Herein we report a series of computationally-designed POP boronic ester pro-drug inhibitors exhibiting nanomolar-potencies in vitro as their active boronic acid species. These easily-accessible (1-2 step syntheses) compounds could facilitate future biochemical and biological studies of this enzyme's role in neurodegenerative diseases and cancer progression.


Asunto(s)
Ácidos Borónicos/farmacología , Descubrimiento de Drogas , Ésteres/farmacología , Profármacos/farmacología , Serina Endopeptidasas/metabolismo , Ácidos Borónicos/síntesis química , Ácidos Borónicos/química , Relación Dosis-Respuesta a Droga , Ésteres/síntesis química , Ésteres/química , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Profármacos/síntesis química , Profármacos/química , Prolil Oligopeptidasas , Relación Estructura-Actividad
15.
J Med Chem ; 62(17): 7874-7884, 2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31393718

RESUMEN

Over the past decade, there has been increasing interest in covalent inhibition as a drug design strategy. Our own interest in the development of prolyl oligopeptidase (POP) and fibroblast activation protein α (FAP) covalent inhibitors has led us to question whether these two serine proteases were equal in terms of their reactivity toward electrophilic warheads. To streamline such investigations, we exploited both computational and experimental methods to investigate the influence of different reactive groups on both potency and binding kinetics using both our own series of POP inhibitors and others' discovered hits. A direct correlation between inhibitor reactivity and residence time was demonstrated through quantum mechanics methods and further supported by experimental studies. This computational method was also successfully applied to FAP, as an overview of known FAP inhibitors confirmed our computational predictions that more reactive warheads (e.g., boronic acids) must be employed to inhibit FAP than for POP.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Gelatinasas/antagonistas & inhibidores , Proteínas de la Membrana/antagonistas & inhibidores , Teoría Cuántica , Serina Endopeptidasas/metabolismo , Relación Dosis-Respuesta a Droga , Endopeptidasas , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Gelatinasas/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Estructura Molecular , Prolil Oligopeptidasas , Relación Estructura-Actividad
16.
Anal Chem ; 91(18): 11803-11811, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31426630

RESUMEN

Kinases are widely distributed in nature and are implicated in many human diseases. Thus, an understanding of their activity and regulation is of fundamental importance. Several kinases are known to be inhibited by ADP. However, thorough investigation of this phenomenon is hampered by the lack of a simple and effective assay for studying this inhibition. We now present a quick, general approach for measuring the effects of reaction products on kinase activity. The method, based on isothermal titration calorimetry, is the first universal, reporter-free, continuous assay for probing kinase inhibition or activation by ADP. In applications to an aminoglycoside phosphotransferase [APH(3')-IIIa] and pantothenate kinases from Escherichia coli (EcPanK) and Pseudomonas aeruginosa (PaPanK), we found ADP to be an efficient inhibitor of all three kinases, with inhibition constant (Ki) values similar to or lower than the Michaelis-Menten constant (Km) values of ATP. Interestingly, ADP was an activator at low concentrations and an inhibitor at high concentrations for EcPanK. This unusual effect was quantitatively modeled and attributed to cooperative interactions between the two subunits of the dimeric enzyme. Importantly, our results suggest that, at typical bacterial intracellular concentrations of ATP and ADP (approximately 1.5 mM and 180 µM, respectively), all three kinases are partially inhibited by ADP, allowing enzyme activity to rapidly respond to changes in the levels of both metabolites.


Asunto(s)
Adenosina Difosfato/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Adenosina Difosfato/química , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Calorimetría/métodos , Activación Enzimática , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Kanamicina/química , Kanamicina/metabolismo , Cinética , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Pseudomonas aeruginosa/enzimología , Reproducibilidad de los Resultados
17.
Protein Sci ; 28(6): 1095-1105, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30968464

RESUMEN

Intramolecular electrostatic attraction and repulsion strongly influence the conformational sampling of intrinsically disordered proteins and domains (IDPs). In order to better understand this complex relationship, we have used nuclear magnetic resonance to measure side chain pKa values and pH-dependent translational diffusion coefficients for the unstructured and highly acidic carboxyl-terminus of γ-tubulin (γ-CT), providing insight into how the net charge of an IDP relates to overall expansion or collapse of the conformational ensemble. Many of the pKa values in the γ-CT are shifted upward by 0.3-0.4 units and exhibit negatively cooperative ionization pH profiles, likely due to the large net negative charge that accumulates on the molecule as the pH is raised. pKa shifts of this magnitude correspond to electrostatic interaction energies between the affected residues and the rest of the charged molecule that are each on the order of 1 kcal mol-1 . Diffusion of the γ-CT slowed with increasing net charge, indicative of an expanding hydrodynamic radius (rH ). The degree of expansion agreed quantitatively with what has been seen from comparisons of IDPs with different charge content, yielding the general trend that every 0.1 increase in relative charge (|Q|/res) produces a roughly 5% increase in rH . While γ-CT pH titration data followed this trend nearly perfectly, there were substantially larger deviations for the database of different IDP sequences. This suggests that other aspects of an IDP's primary amino acid sequence beyond net charge influence the sensitivity of rH to electrostatic interactions.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Tubulina (Proteína)/química , Difusión , Concentración de Iones de Hidrógeno , Resonancia Magnética Nuclear Biomolecular , Electricidad Estática
18.
Nat Commun ; 9(1): 3152, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089867

RESUMEN

Understanding how biological macromolecules assemble into higher-order structures is critical to explaining their function in living organisms and engineered biomaterials. Transient, partly-structured intermediates are essential in many assembly processes and pathway selection, but are challenging to characterize. Here we present a simple thermal hysteresis method based on rapid, non-equilibrium melting and annealing measurements that maps the rate of supramolecular assembly as a function of temperature and concentration. A straightforward analysis of these surfaces provides detailed information on the natures of assembly pathways, offering temperature resolution beyond that accessible with conventional techniques. Validating the approach using a tetrameric guanine quadruplex, we obtain strikingly good agreement with previous kinetics measurements and reveal temperature-dependent changes to the assembly pathway. In an application to the recently discovered co-assembly of polydeoxyadenosine (poly(A)) and cyanuric acid, we show that fiber elongation is initiated when an unstable complex containing three poly(A) monomers acquires a fourth strand.

19.
Anal Chem ; 90(14): 8430-8435, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29926719

RESUMEN

Techniques for rapidly measuring both the strength and mode of enzyme inhibitors are crucial to lead generation and optimization in drug development. Isothermal titration calorimetry (ITC) is emerging as a powerful tool for measuring enzyme kinetics with distinct advantages over traditional techniques. ITC measures heat flow, a feature of nearly all chemical reactions, and gives an instantaneous readout of enzyme velocity, eliminating the need for artificial substrates or postreaction processing. In principle, ITC is an ideal method for characterizing enzyme inhibition. However, existing ITC experiments are not well-suited to rapid throughput and few studies to date have employed this approach. We have developed a new ITC experiment, in which substrate and inhibitor are premixed in the injection syringe, that yields complete kinetic characterization of an enzyme inhibitor in an hour or less. This corresponds to savings in time and material of 5-fold or greater compared to previous ITC methods. We validated the approach using the trypsin inhibitor benzamidine as a model system, recapitulating both its competitive inhibition mode and binding constant. Our approach combines the rapid throughput of optimized spectroscopic assays with the universality and precision of ITC-based methods, providing substantially improved inhibitor characterization for biochemistry and drug development applications.


Asunto(s)
Benzamidinas/farmacología , Calorimetría/métodos , Volumetría/métodos , Inhibidores de Tripsina/farmacología , Algoritmos , Evaluación Preclínica de Medicamentos/métodos , Pruebas de Enzimas/métodos , Cinética , Termodinámica
20.
Nat Commun ; 9(1): 893, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29497037

RESUMEN

Although drug development typically focuses on binding thermodynamics, recent studies suggest that kinetic properties can strongly impact a drug candidate's efficacy. Robust techniques for measuring inhibitor association and dissociation rates are therefore essential. To address this need, we have developed a pair of complementary isothermal titration calorimetry (ITC) techniques for measuring the kinetics of enzyme inhibition. The advantages of ITC over standard techniques include speed, generality, and versatility; ITC also measures the rate of catalysis directly, making it ideal for quantifying rapid, inhibitor-dependent changes in enzyme activity. We used our methods to study the reversible covalent and non-covalent inhibitors of prolyl oligopeptidase (POP). We extracted kinetics spanning three orders of magnitude, including those too rapid for standard methods, and measured sub-nM binding affinities below the typical ITC limit. These results shed light on the inhibition of POP and demonstrate the general utility of ITC-based enzyme inhibition kinetic measurements.


Asunto(s)
Calorimetría/métodos , Serina Endopeptidasas/química , Biocatálisis , Inhibidores Enzimáticos/química , Cinética , Prolil Oligopeptidasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA